Neuro-Forschung bei Siemens: Einige Beispiele

Gruppe: “Bioanologue Technologies and Solutions” (BTS)
Team:

Leitung: Martin Stetter
Post-Doktoranden: Rita Almeida, Janaina Mourao
Doktoranden: Holger Arndt, Mathäus Dejori, Norbert Galm, Miruna Szabo
Diplomanden/Werkstudenten: Andreas Nägele, Kamalaksh Shenoy
Focus Areas

Bio-analogue Technologies & Solutions

Learning Communication Networks

Knowledge Discovery & Decision Support

Advanced Control, Prognosis & Diagnosis

Learning Methods for Business Processes
Bioanalogous Technologies and Solutions

Computational Neuroscience
- Neurodynamical top-down Cognition Models
- Neurostatistical Modeling

Neuronal Bioinformatics
- Pathway Inference of Genetic Networks
- Inference of Genetic Predispositions

Human Brain
- Diagnosis
- Therapy Planning

Neural Model
- Drug Screening
- Drug Discovery

Metabolism
- Diagnosis

© Siemens AG, CT IC 4, 2003
Complexity of the Brain

• Structured, nonlinear, recurrent, dynamical system
• Parallel and distributed signal processing with 10^{11} neurons, 10^{15} synapses (!)
• Cortical „Hardware“ seems roughly uniform despite different tasks
Anatomy of the Primary Visual Cortex

Slices through macaque V1

Nissl stain (Hubel and Wiesel, 1977) CO-stain (Blasdel and Lund, 1983)
Important Cell Types in the Visual Cortex

- pyramidal cell (McGuire et al., 1990)
- basket cell (Lund and Yoshioka, 1991)
- chandelier cell

Excitatory neurons: 5%
Inhibitory neurons: 5%
Funktionsweise des Neurons

Signal: Aktionspotential, „Spike“

Signalfluss:
Dendrit --> Soma --> Axon--> Synapse---> Dendrit ...

(a) Spike kommt an;
 Synapse injiziert Strom I
 Membranspannung steigt (PSP)

(b) Viele PSPs summieren sich
 Bei Schwellenspannung: Spike

(c) Spike läuft Axon entlang
 verzweigt sich mit dem Axon

(d) Spike kommt an.....

Biologisches Lernen (Hypothese):

Synaptischer Strom I ändert sich in Abhängigkeit
von der Zeit und der Hirnaktivität („LTP, LTD“.....)

Einführung: Lernen in Statistik und Biologie
Technik: funktionelle Kernspintomographie

- „functional Magnetic Resonance Imaging“ (fMRI)
- Magnetmomente der Atome werden in einem starken Magnetfeld angeregt (Magnetresonanz)
- Sie relaxieren in den Grundzustand zurück
- Die Relaxation wird durch Gradientenfelder ortsabhängig gemacht (=> Imaging)
- Die Relaxation ist abhängig von der molekularen Umgebung
 -- Wasserstoffkonzentration: strukturelle MRI
 -- Paramagnetische Substanzen (Hbr): funktionelle MRI
Distributed Processing: What- and Where Systems of the Visual Cortex

(Haxby et al., 1994)
Workflow of Neurocognitive Modeling

Microscopic
- Neurophysiology

Mesoscopic
- Funktional Imaging (fMRI, MEG, EEG)

Macroscopic
- Neuropsychology

Data Generation
- Data Integration
- Data Modelling
- Exploitation

Data
- Statistical Modelling
- Neurodynamical Modelling
- Modelling

Exploitation
- Clinical
- Industrial
- Academic

© Siemens AG, CT IC 4, 2003
Modeling Human Cognition

- Long Term Memory
- Cognitive Control
- Emotion

- Conflict Evaluation
 - Motor Planning
 - Conflict Signalling
 - Error Signalling

- Biased Competition Networks
 - Design for Technical / Industrial Applications

- Working Memory
 - Attentional Filtering
 - Object/Spatial Memory
 - Rule Memory

- Attention
 - Object-Based Attention
 - Spatial Attention

© Siemens AG, CT IC 4, 2003
Biased Competition Networks: Principle

- Sensory input layer
- Attention layer
- Working memory layer
- Neuron pools: object specific, object specific, non-selective, inhibitory
- Attention filtering
- Bias
- Competition
- Long-term memory
- Working memory layer: space WM, object WM
- Decision layer
- Rule memory layer
Neurodynamical Spiking Neuron and Mean-Field Models

Brain: 10^{11} Neurons

Networks of Spiking Neurons

Integrate and Fire Model:
$$\tau_n \frac{d}{dt} V_n(t) = -g_m(V_n(t) - V_L) - I_{syn}(t)$$

Linked Pools in a Mean-Field model

Mean-Field Model:
$$\tau \frac{d}{dt} I_B = -I_B + aF(A) + I_{ext} + ...$$

Neuron Pools

Pool Activity:
$$A(t) = \lim_{\Delta t \to 0} \frac{n_{spikes}(t, t + \Delta t)}{M \Delta t}$$
Neurodynamical Models: Integrate and Fire Neurons

Spiking Neuron -> Integrate-and-Fire Model:

\[\tau_m \frac{d}{dt} V_i(t) = -g_m(V_i(t) - V_L) - I_{syn}(t) \]

Synaptic currents:

\[I_{syn}(t) = I_{AMPA,ext}(t) + I_{AMPA,rec}(t) + I_{NMDA,rec}(t) + I_{GABA,rec}(t) \]

Synaptic dynamics:

\[I_{AMPA,ext}(t) = g_{AMPA,ext}(V_i(t) - V_E) \sum_j w_{ij}s_{AMPA,ext}^j(t) \]

\[\frac{d}{dt}s_{AMPA}^j(t) = -\frac{s_{AMPA}^j(t)}{\tau_{AMPA}} + \sum_k \delta(t - t_{k}^j) \]

\[\ldots \]
Neurodynamical Models: Mean-Field (Brunel and Wang 2001)

\[
\tau_m \frac{d}{dt} V_i(t) = -(V_i(t) - V_L) - g_{syn}(V_i(t) - V_{syn}) \sum_j s^{syn}_j(t)
\]

\[
\sum_j s^{syn}_j(t) \rightarrow N\tau_{syn} v + \Delta S(t)
\]

\[
\tau \frac{d}{dt} V_i(t) = -(V_i(t) - V_L) - \mu(v) + \sigma(v) \sqrt{\tau} \eta(t)
\]

\[
v(t_0) = 1/\langle T \rangle \quad v = F(\mu(v), \sigma(v))
\]

Mean-Field (Poisson Spike-Train)

Ornstein-Uhlenbeck

First-Passage-Time

\[
F(\mu, \sigma) = (\tau_{refr} + \tau_m) \int_{\beta(\mu, \sigma)}^\alpha(\mu, \sigma) \sqrt{\pi} e^{x^2} (1 + \text{erf}(x))^{-1} dx
\]

Pool-Activity

\[
v(t) = \lim_{\Delta t \to 0} \frac{n_{spikes}(t, t + \Delta t)}{N\Delta t}
\]
Modeling Human Cognition

- Long Term Memory
- Cognitive Control
- Emotion
- Conflict Evaluation
 - Motor Planning
 - Conflict Signalling
 - Error Signalling
- Biased Competition Networks
 - Design for Technical / Industrial Applications
- Working Memory
 - Attentional Filtering
 - Object/Spatial Memory
 - Rule Memory
- Attention
 - Object-Based Attention, Spatial Attention

© Siemens AG, CT IC 4, 2003
Given: Particular Features (Target Object)
Function: Scanning (Attentional Window Scans the Entire Scene)

Visual Search

Given: Particular Spatial Location (Target Position)
Function: Binding (Attentional Window Bind Features for Identification)

Object Recognition

Visual Attention: Motivation
What- and Where Systems of the Visual Cortex

(Haxby et al., 1994)
Biased Competition: Neurodynamical Model of Visual Attention

- **LGN**: "Where"
- **V1-V4**: "What"
- **PP**: "Where" (Spatial Location)
- **IT**: (Object Recognition)
- **IT Pool**: (Object Specific)
- **PP Pool**: (Location Specific)

Network Diagram:
- **LGN** to **V1-V4** (Feature Extraction)
- **V1-V4** to **IT** (Object Recognition)
- **IT** to **PP** (Spatial Location)
- **PP** to **IT** (Object Specific)
- **IT** to **LGN** (Location Specific)

Inhibitory Pools:
- **V1-V4**: Inhibitory Pool
- **IT**: Inhibitory Pool
- **PP**: Inhibitory Pool
- **LGN**: Inhibitory Pool

Gabor Jets

© Siemens AG, CT IC 4, 2003
Biased Competition: Results for Visual Search
Biased Competition: Results for Object Recognition

Spatial Location

Activity

IT
Target
Distractor

V1
Time

PP

Tower (Winner)

Octave 1
Octave 2
Octave 3

Top-Down Biased Location
Visual Neglect: Neurodynamical Modeling

Symptoms

Fixation Pattern of Neglect Patient

„Neglect“ Unknown Objects

saccades

Before Learning

IT

V1-V4

„Neglect“-Lesion (Increased Noise)

After Learning

IT

V1-V4

„Neglect“ Known Objects

Model Prediction: Object Teaching Improves Performance

© Siemens AG, CT IC 4, 2003
Visual Neglect: Prediction for Rehabilitation Strategy

Fixation Pattern for Simulated Neglect

(a) neglect

(b) top-down effect on neglect
Visual Neglect: Rehabilitation Success

Fixation Profiles of female Neglect Patient (Univ. Birmingham)
Modeling Human Cognition: Attentional Filtering

Cognitive Control

- Long Term Memory
- Emotion

Biased Competition Networks
- Design for Technical/Industrial Applications

Conflict Evaluation
- Motor Planning
- Conflict Signalling
- Error Signalling

Working Memory
- Attentional Filtering
- Object/Spatial Memory
- Rule Memory

Attention
- Object-Based Attention, Spatial Attention
Attentional Filtering in Focused Attention Task

Task:
Saccade to first appearance of target (fish) in sequence of objects (fish, bear, hamburger) and cued side only!

Measurements:
Monkey Prefrontal Cortex

(Everling et al., Nat. Neurosci. 5:671 (2002))
Biased Cooperation-Competition (BCC) Model for Attentional Filtering

The four possible input-combinations for the bilateral task

Target-bias: from rule-memory, specifies identity of target

Attentional bias: from spatial working memory, specifies cued side
Conclusion:
- Competition and Cooperation together produce attentional filtering
- Attentional facilitation is mediated by cooperation
- Attentional suppression is mediated by competition
Modeling Human Cognition: Motor Planning under Conflict

- Long Term Memory
- Emotion
- Cognitive Control
- Conflict Evaluation
 - Motor Planning
 - Conflict Signalling
 - Error Signalling
- Biased Competition Networks
 - Design for Technical/Industrial Applications
- Working Memory
 - Attentional Filtering
 - Object/Spatial Memory
- Attention
 - Object-Based Attention, Spatial Attention

© Siemens AG, CT IC 4, 2003
Saccade Planning under Conflict: Experiment and Model

Saccade countermanding task

Climbing activity in FEF determines saccade execution

Successful conflict handling (countermanding) is reflected by FEF neurons

(Hanes et al., J. Neurophysiol. 79:817 (1998))
Saccade Planning under Conflict: Preliminary Results

- A stop signal can interrupt the motor plan, depending on the timing
- Handling conflict can be understood as an emergent dynamic process

© Siemens AG, CT IC 4, 2003
Bioanalogous Technologies and Solutions

Computational Neuroscience
- Neurodynamical top-down Cognition Models
- Neurostatistical Modeling

Neuronal Bioinformatics
- Pathway Inference of Genetic Networks
- Inference of Genetic Predispositions

Metabolism
- Drug Discovery

Diagnosis
- Therapy Planning

Drug Screening

Human Brain

Neural Model
Genome and Proteome: A Regulatory Network

Genome
- About 30,000 Genes
- Cover 2-3% of DNA
- Same for most cells

Proteome
- Set of expressed proteins
- Subset of about 10^6 proteins
- Differs between cells in a characteristic way

Genetic Predisposition

Gene-Expression

DNA-Microarrays

Regulation

Networks

Genome and Proteome: A Regulatory Network
Microarray Technology

Snapshot of gene expression in a cell monitoring thousands of genes simultaneously.

Basics
- Each spot contains DNA-fragments from a specific gene.
- cDNA can base-pair with DNA.

Protocol
- Extract mRNA from the cell.
- Use mRNA to produce cDNA.
- Label cDNA (red or green).
- Combine the red and green colored cDNA.
- Put mixed cDNA on DNA-chip.
- Some of the cDNA bounds to spots.
- Wash off unbounded cDNA.
- Scan the chip with a red and a green laser to detect bound cDNA.

\[\log_2 \frac{Cy5}{Cy3} \]
Disease Markers from Gene-Expression

Aims:

- Data driven categorization of global gene-expression patterns
- On-the-fly prediction of disease characteristics
Example: ALL- Subtype Biomarkers from Gene-Expression

- Expression profile is a highly sensitive marker for disease
- Expression profile is a highly sensitive marker for disease subtype

ALL = Acute Lymphoblastic Leukaemia

Data:
St. Jude Hospital, Memphis

gene-expression profiles from 327 patients
Life Science Support by Genetic Network Simulation: Example

Genome
- About 30,000 Genes
- Cover 2-3% of DNA
- Same for most cells

Regulation

Expression

Proteome
- Set of expressed proteins
- Subset of about 10^6 proteins
- Differs between cells in a characteristic way

Wrong action

Disease

Genetic Networks

Proteins

DNA

transcription

mRNA

translation

Expression

Wrong action

Disease
Gene Regulation and Genetic Networks

PTM = post-translational modification
RR = regulatory region
GeneSim™: Genetic Network Simulator

Aims:

• Understanding emergent systems-level properties of living cells
• Estimation and analysis of genetic regulatory networks
• Identification of drug targets
• Systematic control over genetic programs (tissue regeneration...)

Drug Targets
Disease Mechanisms
Genetic Programs
Life Models
Modelling regulatory mechanisms

A Bayes net can be used as to model of regulatory network of genes.

Each node represents a gene.

Edges describe causal relationships between two genes, e.g. regulatory mechanisms.

The type of regulation is encoded in the Conditional probability table.

Gene D influences gene E

Gene D acts as an activator on gene E

To get such a model we have to learn a Bayes net from microarray data.
GeneSim™: Network Learning and Exploration

Gene expression data set

Learning

(GENESIM)

Exploration

Genetic Network Learner
Genetic Network Explorer

© Siemens AG, CT IC 4, 2003
GeneSim™: Interventional Studies

- "no intervention"
- "activate gene 33355_at"
- "activate gene 38679_g"
- measured ALL data

(GENESIM)

Genetic Network Learner

Genetic Network Explorer

© Siemens AG, CT IC 4, 2003
Through chromosomal translocation PBX1 becomes an oncogene probably causing childhood ALL. It activates other genes that are either normally not expressed or expressed at low levels.

“gene 33355_at“ is the proto-oncogene PBX 1
Monogenetic

<table>
<thead>
<tr>
<th>Score</th>
<th>Affy-name</th>
<th>Gene</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.535</td>
<td>37350_at</td>
<td>PSMD10</td>
<td>proteosome subunit, protein degradation</td>
</tr>
<tr>
<td>0.531</td>
<td>41132_r_at</td>
<td>HNRHP2</td>
<td>RNA-binding</td>
</tr>
<tr>
<td>0.432</td>
<td>38518_at</td>
<td>SCML2</td>
<td>embryogenesis, transcription factor</td>
</tr>
<tr>
<td>0.382</td>
<td>38317_at</td>
<td>TCEAL1</td>
<td>repression of Pol II transcription</td>
</tr>
<tr>
<td>0.378</td>
<td>36139_at</td>
<td>NDUFA1</td>
<td>energy generation</td>
</tr>
</tbody>
</table>

Bi-genetic

<table>
<thead>
<tr>
<th>Score</th>
<th>Gene 1</th>
<th>Gene 2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.535</td>
<td>PSMD10</td>
<td></td>
<td>proteosome subunit, protein degradation</td>
</tr>
<tr>
<td>-0.030</td>
<td>MME</td>
<td></td>
<td>protease, protein degradation</td>
</tr>
<tr>
<td>0.764</td>
<td>PSMD10</td>
<td>MME</td>
<td>anti-apoptosis</td>
</tr>
<tr>
<td>0.201</td>
<td>TGFB1</td>
<td></td>
<td>anti-apoptosis</td>
</tr>
<tr>
<td>0.608</td>
<td>PSMD10</td>
<td>TGFB1</td>
<td>anti-apoptosis</td>
</tr>
</tbody>
</table>
GeneSim™: Structure Analysis

Real ALL Data

Network Structure

Learning

Exploration

(GENESIM)

Genetic Network Learner

Genetic Network Explorer

© Siemens AG, CT IC 4, 2003